
doi: 10.1137/140963479
Summary: In this paper we introduce a new matrix nearness problem that is intended to generalize the distance to instability. Due to its applicability in analyzing the robustness of eigenvalues with respect to the arbitrary localization sets (domains) in the complex plane, we call it the distance to delocalization. For the open left half-plane or the unit disk, the distance to the nearest unstable matrix is obtained as a special case. Following the theoretical framework of Hermitian functions and the Lyapunov-type localization approach, we present new Newton-type algorithms for the distance to delocalization: first using an explicit computation of the desired singular values (eD2D), and then using an implicit computation (iD2D). For both algorithms, we introduce a special stabilization technique of the Newton steps and, for a certain class of the localization domains, we provide an additional globality test. Since our investigations are motivated by several practical applications, we illustrate our approach on some of them. Furthermore, in the special case when the distance to delocalization becomes the distance to the continuous time instability, we validate our algorithms against the state-of-the-art computational methods.
Numerical computation of eigenvalues and eigenvectors of matrices, Eigenvalues, singular values, and eigenvectors, stability radius, stability, distance to instability, \(\varepsilon\)-pseudospectra, matrix nearness problems, Hermitian functions, Newton's method, Lyapunov stability test, spectral abscissa, Matrix pencils
Numerical computation of eigenvalues and eigenvectors of matrices, Eigenvalues, singular values, and eigenvectors, stability radius, stability, distance to instability, \(\varepsilon\)-pseudospectra, matrix nearness problems, Hermitian functions, Newton's method, Lyapunov stability test, spectral abscissa, Matrix pencils
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
