
In the paper we consider the Stiefel manifold $V_{n;k}$ as a principal $U(k)$- bundle over the Grassmann manifold and study the cut locus from the unit element. We gave the complete description of this cut locus on $V_{n;1}$ and presented the sufficient condition on the general case. At the end, we study the complement to the cut locus of $V_{2k;k}$.
Mathematics - Differential Geometry, Differential Geometry (math.DG), Optimization and Control (math.OC), FOS: Mathematics, Mathematics - Optimization and Control
Mathematics - Differential Geometry, Differential Geometry (math.DG), Optimization and Control (math.OC), FOS: Mathematics, Mathematics - Optimization and Control
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
