
doi: 10.1137/1017072
The appearance of secondary motions in a viscous fluid field can be understood to some extent as a bifurcation phenomenon with exchange of stability between the basic and the secondary flow. This article summarizes the main mathematical results of bifurcation and stability in hydrodynamic stability theory so far obtained. A unified functional-analytic approach is presented which tries to accentuate the ideas and to avoid technicalities. Besides the general results on the existence, the number of solutions and their qualitative behavior, the constructive analytical methods are emphasized. The Taylor and the Benard models are studied in detail. In the latter case, all possible solutions of regular cell pattern are classified. Stability and instability and their exchange at the point of bifurcation are studied.
Nonlinear effects in hydrodynamic stability
Nonlinear effects in hydrodynamic stability
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 49 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
