
doi: 10.1137/090779486
handle: 11104/0187315
The $m$th Chebyshev polynomial of a square matrix $A$ is the monic polynomial that minimizes the matrix 2-norm of $p(A)$ over all monic polynomials $p(z)$ of degree $m$. This polynomial is uniquely defined if $m$ is less than the degree of the minimal polynomial of $A$. We study general properties of Chebyshev polynomials of matrices, which in some cases turn out to be generalizations of well-known properties of Chebyshev polynomials of compact sets in the complex plane. We also derive explicit formulas of the Chebyshev polynomials of certain classes of matrices, and explore the relation between Chebyshev polynomials of one of these matrix classes and Chebyshev polynomials of lemniscatic regions in the complex plane.
Arnoldi's method, Krylov subspace methods, matrix approximation problems, Chebyshev polynomials, complex approximation theory, ddc: ddc:512
Arnoldi's method, Krylov subspace methods, matrix approximation problems, Chebyshev polynomials, complex approximation theory, ddc: ddc:512
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
