
doi: 10.1137/070703065
We develop fast algorithms for computations involving finite expansions in Gegenbauer polynomials. A method is described to convert any finite expansion between different families of Gegenbauer polynomials. For a degree-$n$ expansion the computational cost is $\mathcal{O}(n(\log(1/\varepsilon)+|\alpha-\beta|))$, where $\varepsilon$ is the prescribed accuracy, and $\alpha$ and $\beta$ are the respective Gegenbauer indices. Special cases involving Chebyshev polynomials of first kind are particularly important. In combination with (nonequispaced) discrete cosine transforms, we obtain efficient methods for the evaluation of expansions at prescribed nodes, and for the projection onto a sequence of Gegenbauer polynomials from given function values, respectively.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 29 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
