Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao zbMATH Openarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
SIAM Journal on Matrix Analysis and Applications
Article . 1992 . Peer-reviewed
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Optimal and Superoptimal Circulant Preconditioners

Optimal and superoptimal circulant preconditioners
Authors: Evgenij E. Tyrtyshnikov;

Optimal and Superoptimal Circulant Preconditioners

Abstract

The author investigates preconditioning methods for linear algebraic systems \(Ax=f\) with a dense positive definite matrix \(A\). He calls a conditioning matrix \(C\) optimal if it minimizes \(\| C-A\|\) and superoptimal if it minimizes \(\| I-C^{-1} A\|\), both in the Frobenius norm. The conditioners are taken from the class of circulant, doubly circulant or generally multilevel circulant matrices. The author shows that the construction of superoptimal preconditioners by a fast Fourier transform algorithms has the complexity \(O(n^ 2\log_ 2 n)\) in the general (positive definite) case and \(O(n\log_ 2 n)\) in the case of coefficient matrices of Toeplitz or double Toeplitz type.

Keywords

Iterative numerical methods for linear systems, preconditioning, Toeplitz matrices, Numerical computation of matrix norms, conditioning, scaling, Preconditioners for iterative methods, fast Fourier transform algorithms, complexity, circulant matrices, Conditioning of matrices

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    167
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
167
Top 10%
Top 1%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!