Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao zbMATH Openarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
SIAM Journal on Mathematical Analysis
Article . 1989 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Constant Regression Polynomials and the Wishart Distribution

Constant regression polynomials and the Wishart distribution
Authors: Richards, Donald St. P.;

Constant Regression Polynomials and the Wishart Distribution

Abstract

Summary: Results are obtained for the problems of constructing and characterizing scalar-valued polynomial statistics having constant regression on the mean of a random sample of Wishart matrices. The construction procedure introduced by \textit{B. Heller} [J. Multivariate Anal. 14, 101-104 (1984; Zbl 0541.62034)] is generalized to show that certain polynomials in the principal minors of the sample matrices have zero regression on the mean. The zero-regression polynomials are characterized through expectations involving certain matrix-valued Bessel functions of \textit{K. I. Gross} and \textit{R. A. Kunze} [J. Funct. Anal. 22, 73-105 (1976; Zbl 0322.43014)]. It is shown that the zero-regression property characterizes Wishart distributions within a wide family of mixtures of Wishart distributions.

Related Organizations
Keywords

scalar-valued polynomial statistics, Wishart matrices, Analysis on other specific Lie groups, zero- regression polynomials, constant regression, mixtures of Wishart distributions, matrix-valued Bessel functions, Multivariate distribution of statistics, Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.), Characterization and structure theory for multivariate probability distributions; copulas, hyperbolic differential operator, unitary representation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!