Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao zbMATH Openarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
SIAM Journal on Mathematical Analysis
Article . 1980 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On a Nonlinear Hyperbolic Volterra Equation

On a nonlinear hyperbolic Volterra equation
Authors: Staffans, Olof J.;

On a Nonlinear Hyperbolic Volterra Equation

Abstract

We study questions of existence, boundedness and asymptotic behavior of the solutions of the initial value problem \[(*)\qquad \begin{array}{*{20}c} {u_t (t,x) - \int_0^t {a (t - s)\sigma (u_x (s,x))_x = f(t,x),\quad 0 < t < \infty ,\quad x \in R.} } \\ {u(0,x) = u_0 (x),\quad x \in R.} \\ \end{array} \] Here $a:R^ + = [0,\infty ) \to R,\sigma :R \to R,f:R^ + \times R \to R,u_0 :R \to R$ are given, sufficiently smooth functions, and the subscripts t and x denote partial derivatives. If $a(t) \equiv 1$, then (*) reduces to a nonlinear wave equation, and it is well known that in this case classical solutions of (*) do not in general exist for all time. However, we show that for a large class of kernels of physical importance equation (*) has global classical solutions for small data. This class of kernels includes all those which are nonconstant, nonnegative, nonincreasing, convex and sufficiently smooth. We also analyze the asymptotic behavior of the solutions.

Keywords

Integro-partial differential equations, nonlinear hyperbolic Volterra equation, existence, asymptotic behavior, boundedness, initial value problem, Asymptotics of solutions to integral equations

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    78
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
78
Top 10%
Top 1%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!