Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao zbMATH Openarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 1970
Data sources: zbMATH Open
SIAM Journal on Applied Mathematics
Article . 1970 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Stochastic Integral Equation

A stochastic integral equation
Authors: Anderson, M. W.;

A Stochastic Integral Equation

Abstract

We investigate a stochastic integral equation of the form $x'(s) = y'(s) + \int_0^\alpha {K(s,t)dx(t)} $, where $y( s )$ is a process with orthogonal increments on the interval $T_\alpha = [0,\alpha ]$ and $K(s,t)$ is a continuous Fredholm or Volterra kernel on $T_\alpha \times T_\alpha $. Since $y'(s)$ need not exist, we must first decide upon a rigorous interpretation for this schematic equation. We say that a process $x(s)$ on $T_\alpha $ satisfies this integral equation if, for a suitable class $H_\alpha $ of functions on $T_\alpha $, the equality\[ \int_0^\alpha {g(s)dx(s)} = \int_0^\alpha {g(s)dy(s) } + \int_0^\alpha {g(s)ds } \int_0^\alpha {K(s,t)dx(t) } \] holds for $g \in H_\alpha $. With this interpretation, a formal integration of the schematic equation yields a meaningful equality. A process $x(s)$ is exhibited which satisfies the integral equation by a consideration of the (formal) reciprocated form of the integral equation. A similar interpretation is also obtained for the reciprocated form....

Keywords

Stochastic integral equations

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!