Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Proceedings of the R...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Proceedings of the Royal Society of London Series A - Mathematical and Physical Sciences
Article . 1965 . Peer-reviewed
License: Royal Society Data Sharing and Accessibility
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
SIAM Journal on Applied Mathematics
Article . 1966 . Peer-reviewed
Data sources: Crossref
versions View all 4 versions
addClaim

Nonlinear Dispersive Waves

Nonlinear dispersive waves
Authors: Whitham, G. B.;

Nonlinear Dispersive Waves

Abstract

Abstract A general theory is developed for studying changes of a wave train governed by non-linear partial differential equations. The technique is to average over the local oscillations in the medium and so obtain differential equations for the variations in amplitude, wave number, etc. It corresponds to the Krylov-Bogoliubov averaging technique for the ordinary differential equations of non-linear vibrations. The equations obtained in this way are hyperbolic and can be handled by the usual theory of quasi-linear hyperbolic systems, involving the theory of characteristics and shock waves. In this case the ‘shocks’ are abrupt changes in the amplitude, wave number, etc. They do not involve dissipation, but it turns out that frequency plays the role corresponding to entropy in ordinary gas dynamic shocks. It is not clear whether these shocks will really occur in practice. However, they have a number of interesting properties and seem to be relevant to the discussion of so-called collisionless shocks in plasma dynamics. The main applications envisaged are to water waves and plasma dynamics, and the theory is developed using typical equations from these areas. If the original equations are linear, this theory predicts the usual description of dispersive waves in terms of group velocity, so it may be considered as an extension of the group velocity concept to non-linear problems. Mathematically, the theory may be considered as an extension of some of the methods and ideas for the non-linear ordinary differential equations of vibration theory to partial differential equations.

Related Organizations
Keywords

Water waves, gravity waves; dispersion and scattering, nonlinear interaction, fluid mechanics, nonlinear dispersive waves, Navier-Stokes equations

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    466
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 0.01%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
466
Top 0.1%
Top 0.01%
Top 10%
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!