Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular and Cellul...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular and Cellular Biology
Article . 2009 . Peer-reviewed
License: ASM Journals Non-Commercial TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An Oligomerized 53BP1 Tudor Domain Suffices for Recognition of DNA Double-Strand Breaks

Authors: Omar, Zgheib; Kristopher, Pataky; Juergen, Brugger; Thanos D, Halazonetis;

An Oligomerized 53BP1 Tudor Domain Suffices for Recognition of DNA Double-Strand Breaks

Abstract

53BP1, the vertebrate ortholog of the budding yeast Rad9 and fission yeast Crb2/Rhp9 checkpoint proteins, is recruited rapidly to sites of DNA double-strand breaks (DSBs). A tandem tudor domain in human 53BP1 that recognizes methylated residues in the histone core is necessary, but not sufficient, for efficient recruitment. By analysis of deletion mutants, we identify here additional elements in 53BP1 that facilitate recognition of DNA DSBs. The first element corresponds to an independently folding oligomerization domain. Replacement of this domain with heterologous tetramerization domains preserves the ability of 53BP1 to recognize DNA DSBs. A second element is only about 15 amino acids long and appears to be a C-terminal extension of the tudor domain, rather than an independently functioning domain. Recruitment of 53BP1 to sites of DNA DSBs is facilitated by histone H2AX phosphorylation and ubiquitination. However, none of the 53BP1 domains/elements important for recruitment are known to bind phosphopeptides or ubiquitin, suggesting that histone phosphorylation and ubiquitination regulate 53BP1 recruitment to sites of DNA DSBs indirectly.

Keywords

Cell Nucleus, Recombinant Fusion Proteins, Green Fluorescent Proteins, Molecular Sequence Data, Intracellular Signaling Peptides and Proteins, Reproducibility of Results, Cell Compartmentation, Protein Structure, Tertiary, Structure-Activity Relationship, Cell Line, Tumor, Radiation, Ionizing, Humans, DNA Breaks, Double-Stranded, Amino Acid Sequence, Protein Structure, Quaternary, Tumor Suppressor p53-Binding Protein 1, Conserved Sequence, Protein Binding

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    106
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
106
Top 10%
Top 10%
Top 10%
bronze