
Several members of the family Flaviviridae , including HCV, have adapted cap-independent translation strategies to overcome canonical eukaryotic translation pathways and use cis -acting RNA-elements, designated viral internal ribosome entry sites (IRES), to initiate translation. Although novel hepaciviruses have been identified in different animal species, only limited information is available on their biology on molecular level. Therefore, our aim was a fundamental analysis of BovHepV IRES functions. The findings which show that functional IRES elements are also crucial for BovHepV translation expand our knowledge on molecular mechanism of hepacivirus propagation. We also studied the possible effects of one major host factor implicated in HCV pathogenesis, miR-122. The results of mutational analyses suggested that miR-122 enhances virus translation mediated by BovHepV IRES.
Animals, Cattle Diseases, Humans, RNA, Viral, Cattle, Hepacivirus, Internal Ribosome Entry Sites, 5' Untranslated Regions, HeLa Cells
Animals, Cattle Diseases, Humans, RNA, Viral, Cattle, Hepacivirus, Internal Ribosome Entry Sites, 5' Untranslated Regions, HeLa Cells
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 8 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
