Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao EcoSal Plusarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
EcoSal Plus
Article . 2004 . Peer-reviewed
License: ASM Journals Non-Commercial TDM
Data sources: Crossref
EcoSal Plus
Article . 2015
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Selenocysteine Lyase

Authors: Thressa C, Stadtman;
Abstract

Selenocysteine is a naturally occurring analog of cysteine in which the sulfur atom of the latter is replaced with selenium. This seleno-amino acid occurs as a specific component of various selenoproteins and selenium-dependent enzymes. Incorporation of selenocysteine into these proteins occurs cotranslationally as directed by the UGA codon. For this process, a special tRNA having an anticodon complimentary to UGA, tRNA Sec , is utilized. In Escherichia coli and related bacteria, this tRNA first is amino acylated with serine, and the seryl-tRNA Sec is converted to selenocysteyl-tRNA Sec . The specific incorporation of selenocysteine into proteins directed by the UGA codon depends on the synthesis of selenocysteyl-tRNA Sec . Included in the selenium delivery protein category are rhodaneses that mobilize selenium from inorganic sources and NIFS-like proteins that liberate elemental selenium from selenocysteine. The NIFS protein from Azotobacter vinelandii was found to serve as an efficient catalyst in vitro for delivery of selenium from free selenocysteine to Escherichia coli selenophosphate synthetase for selenophosphate formation. The widespread distribution of selenocysteine lyase in numerous bacterial species was reported and the bacterial enzymes, like the pig liver enzyme, required pyridoxal phosphate as cofactor. Three NIFS-like genes were isolated from E. coli by Esaki and coworkers and the expressed gene products were isolated and characterized. One of these NIFS-like proteins also exhibited a high preference for selenocysteine over cysteine. M. vannielii , an anaerobic methane-producing organism, that grows in a mineral medium containing formate as sole organic carbon source, synthesizes several specific selenoenzymes required for growth and energy production under these conditions.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!