Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Clinical and Vaccine...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Clinical and Vaccine Immunology
Article . 2016 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2016
License: CC BY
Data sources: PubMed Central
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Optimizing Immunization Strategies for the Induction of Antigen-Specific CD4 and CD8 T Cell Responses for Protection against Intracellular Parasites

Authors: Hofmeyer, Kimberly A.; Duthie, Malcolm S.; Laurance, John D.; Favila, Michelle A.; Van Hoeven, Neal; Coler, Rhea N.; Reed, Steven G.;
APC: 1,996.81 EUR

Optimizing Immunization Strategies for the Induction of Antigen-Specific CD4 and CD8 T Cell Responses for Protection against Intracellular Parasites

Abstract

ABSTRACTImmunization strategies that generate either CD4 or CD8 T cell responses are relatively well described, but less is known with regard to optimizing regimens to induce both CD4 and CD8 memory T cells. Considering the importance of both CD4 and CD8 T cells in the control of intracellular pathogens such asLeishmania donovani, we wanted to identify vaccines that could raise both CD4 and CD8 T cell responses and determine how to configure immunization strategies to generate the best combined protective T cell response. We examined responses generated against theLeishmaniavaccine antigen F3 following its administration in either recombinant form with the Toll-like receptor 4 (TLR4) agonist-containing adjuvant formulation GLA-SE (F3+GLA-SE) or as a gene product delivered in an adenoviral vector (Ad5-F3). Homologous immunization strategies using only F3+GLA-SE or Ad5-F3 preferentially generated either CD4 or CD8 T cells, respectively. In contrast, heterologous strategies generated both antigen-specific CD4 and CD8 T cells. Administration of F3+GLA-SE before Ad5-F3 generated the greatest combined CD4 and CD8 responses. Cytotoxic CD8 T cell responses were highest when Th1 cells were generated prior to their induction by Ad5-F3. Finally, a single immunization with a combination of F3+GLA-SE mixed with Ad5-F3 was found to be sufficient to provide protection against experimentalL. donovaniinfection. Taken together, our data delineate immunization regimens that induce antigen-specific CD4 and CD8 T cell memory responses, and identify a single immunization strategy that could be used to rapidly provide protection against intracellular pathogens in regions where access to health care is limited or sporadic.

Keywords

CD4-Positive T-Lymphocytes, Vaccines, Vaccines, Synthetic, Vaccination, Antigens, Protozoan, CD8-Positive T-Lymphocytes, Mice, Inbred C57BL, Disease Models, Animal, Treatment Outcome, Animals, Humans, Female, Leishmaniasis, Leishmaniasis Vaccines, Leishmania donovani

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Average
Average
Top 10%
Green
gold