
A semiconductor laser capable of operating under both positive and negative bias voltage is reported. Its active region behaves functionally as two different laser materials, emitting different wavelengths, depending on the design, when biased with opposite polarities. This concept was used for the generation of two wavelengths (6.3 and 6.5 micrometers) in the midinfrared region of the spectrum from a single quantum cascade laser structure. The two wavelengths are excited independently of each other and separated in time. This may have considerable impact on various semiconductor laser applications including trace gas analysis in remote sensing applications with differential absorption spectroscopy.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 52 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
