
pmid: 17740937
Astrophysical jets are linear structures associated with stars and galaxies which span about seven orders of magnitude in size; the largest jets emanating from galaxies are about 100 times the size of our galaxy and are the largest single objects in the universe. Jets associated with stars are composed of ionized gas moving away from the star with velocities of a few hundred kilometers per second. Extragalactic jets are composed of relativistic particles, magnetic field, and probably additional amounts of cooler ionized plasma either originally ejected in the jet or entrained by it out of the surrounding gaseous medium. The initial outflow velocity for extragalactic jets may be relativistic, and average outflow speeds of several thousand kilometers per second are likely. The energy flux carried by extragalactic jets may be in excess of 10 46 ergs per second, depending upon the nature of the jet. A definition of jet properties, deduced from their interaction with the ambient medium, can place essential constraints on models for the central power source in the parent galaxy or quasi-stellar object where they originate.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 31 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
