
pmid: 17829208
Highly parallel computing architectures are the only means to achieve the computational rates demanded by advanced scientific problems. A decade of research has demonstrated the feasibility of such machines, and current research focuses on which architectures are best suited for particular classes of problems. The architectures designated as MIMD and SIMD have produced the best results to date; neither shows a decisive advantage for most near-homogeneous scientific problems. For scientific problems with many dissimilar parts, more speculative architectures such as neural networks or data flow may be needed.
ddc:004, DATA processing & computer science, info:eu-repo/classification/ddc/004, 004
ddc:004, DATA processing & computer science, info:eu-repo/classification/ddc/004, 004
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 42 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
