Powered by OpenAIRE graph
Found an issue? Give us feedback
Sciencearrow_drop_down
Science
Article . 1989 . Peer-reviewed
Data sources: Crossref
Science
Article . 1989
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Genetic Engineering of Livestock

Authors: Vernon G. Pursel; Ralph L. Brinster; Richard D. Palmiter; R. G. Campbell; Robert E. Hammer; Carl A. Pinkert; Kurt F. Miller; +1 Authors

Genetic Engineering of Livestock

Abstract

Genetic engineering of livestock is expected to have a major effect on the agricultural industry. However, accurate assessment of the consequences of transgene expression is impossible without multigenerational studies. A systematic study of the beneficial and adverse consequences of long-term elevations in the plasma levels of bovine growth hormone (bGH) was conducted on two lines of transgenic pigs. Two successive generations of pigs expressing the bGH gene showed significant improvements in both daily weight gain and feed efficiency and exhibited changes in carcass composition that included a marked reduction in subcutaneous fat. However, long-term elevation of bGH was generally detrimental to health: the pigs had a high incidence of gastric ulcers, arthritis, cardiomegaly, dermatitis, and renal disease. The ability to produce pigs exhibiting only the beneficial, growth-promoting effects of growth hormone by a transgenic approach may require better control of transgene expression, a different genetic background, or a modified husbandry regimen.

Keywords

Swine, Body Weight, Agriculture, Organ Size, Growth Hormone-Releasing Hormone, Transfection, Animals, Genetically Modified, Mice, Animals, Domestic, Growth Hormone, Animals, Female, Insulin-Like Growth Factor I, Genetic Engineering

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    408
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
408
Top 10%
Top 1%
Top 1%
Upload OA version
Are you the author? Do you have the OA version of this publication?