Powered by OpenAIRE graph
Found an issue? Give us feedback
Sciencearrow_drop_down
Science
Article . 1989 . Peer-reviewed
Data sources: Crossref
Science
Article . 2010
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Mimicking Photosynthesis

Authors: D, Gust; T A, Moore;

Mimicking Photosynthesis

Abstract

Although the concept of an artificial photosynthetic reaction center that mimics natural electron- and energy-transfer processes is an old one, in recent years major advances have occurred. In this review, some relatively simple molecular dyads that mimic certain aspects of photosynthetic electron transfer and singlet or triplet energy transfer are described. Dyads of this type have proven to be extremely useful for elucidating basic photochemical principles. In addition, their limitations, particularly in the area of temporal stabilization of electronic charge separation, have inspired the development of much more complex multicomponent molecular devices. The use of the basic principles of photoinitiated electron transfer to engineer desirable properties into the more complex species is exemplified. The multiple electrontransfer pathways available with these molecules make it possible to fine-tune the systems in ways that are impossible with simpler molecules. The study of these devices not only contributes to our understanding of natural photosynthesis, but also aids in the design of artificial solar energy harvesting systems and provides an entry into the nascent field of molecular electronics.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    403
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
403
Top 1%
Top 1%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!