Powered by OpenAIRE graph
Found an issue? Give us feedback
Sciencearrow_drop_down
Science
Article . 1974 . Peer-reviewed
Data sources: Crossref
Science
Article . 2010
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Nuclear Eclectic Power

Authors: David J. Rose;

Nuclear Eclectic Power

Abstract

The uranium and thorium resources, the technology, and the social impacts all seem to presage an even sharper increase in nuclear power for electric generation than had hitherto been predicted. There are more future consequences. The " hydrogen economy ." Nuclear power plants operate best at constant power and full load. Thus, a largely nuclear electric economy has the problem of utilizing substantial off-peak capacity; the additional energy generation can typically be half the normal daily demand. Thus, the option of generating hydrogen as a nonpolluting fuel receives two boosts: excess nuclear capacity to produce it, plus much higher future costs for oil and natural gas. However, the so-called "hydrogen economy" must await the excess capacity, which will not occur until the end of the century. Nonelectric uses . By analyses similar to those performed here, raw nuclear heat can be shown to be cheaper than heat from many other fuel sources, especially nonpolluting ones. This will be particularly true as domestic natural gas supplies become more scarce. Nuclear heat becomes attractive for industrial purposes, and even for urban district heating, provided (i) the temperature is high enough (this is no problem for district heating, but could be for industry; the HTGR's and breeders, with 600C or more available, have the advantage); (ii) there is a market for large quantities (a heat rate of 3800 Mw thermal, the reactor size permitted today, will heat Boston, with some to spare); and (iii) the social costs become more definitely resolved in favor of nuclear power. Capital requirements . Nuclear-electric installations are very capital-intensive. One trillion dollars for the plants, backup industry, and so forth is only 2 percent of the total gross national product (GNP) between 1974 and 2000, at a growth rate of 4 percent per year. But capital accumulation tends to run at about 10 percent of the GNP, so the nuclear requirements make a sizable perturbation. Also increasing the electric share of energy provision means increasing electric power utilization, which has a high technological content and demands yet more capital. Thus, provision of capital is a major problem ahead, especially for electric utilities. The need for people . The supply of available trained technologists, environmental engineers, and so on, especially in the architect-engineer profession, is insufficient for the task ahead, especially since the same categories of people will be in demand to build up a synthetic fuels industry and do other new things. Beyond these specific items and beyond the technological discussion, one can feel deeper currents running in this debate. Issues that started out seeming technological ended up being mainly societal: prevention of clandestine use, either by vigilance or by public spirit; a determination to maintain quality and to safeguard wastes that transcends narrow interests; a perception of social benefits and damage much more holistic than before; the need to manage programs more openly and better than before. Questions and doubts become more acute, answers and methods less sure. Here is a final question. We have never before been given a virtually infinite resource of something we craved. So far, increasingly large amounts of energy have been used to turn resources into junk, from which activity we derive ephemeral benefit and pleasure; the track record is not too good. What will we do now?

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!