Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sciencearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Science
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Research.fi
Article . 2020 . Peer-reviewed
Data sources: Research.fi
Science
Article . 2012 . Peer-reviewed
Data sources: Crossref
Science
Article . 2013
versions View all 3 versions
addClaim

Evolutionary Dynamics of Gene and Isoform Regulation in Mammalian Tissues

Authors: Merkin, Jason Jay; Russell, Caitlin; Chen, Ping; Burge, Christopher B;

Evolutionary Dynamics of Gene and Isoform Regulation in Mammalian Tissues

Abstract

Whence Species Variation? Vertebrates have widely varying phenotypes that are at odds with their much more limited proteincoding genotypes and conserved messenger RNA expression patterns. Genes with multiple exons and introns can undergo alternative splicing, potentially resulting in multiple protein isoforms (see the Perspective by Papasaikas and Valcárcel ). Barbosa-Morais et al. (p. 1587 ) and Merkin et al. (p. 1593 ) analyzed alternative splicing across the genomes of a variety of vertebrates, including human, primates, rodents, opossum, platypus, chicken, lizard, and frog. The findings suggest that the evolution of alternative splicing has for the most part been very rapid and that alternative splicing patterns of most organs more strongly reflect the identity of the species rather than the organ type. Species-classifying alternative splicing can affect key regulators, often in disordered regions of proteins that may influence protein-protein interactions, or in regions involved in protein phosphorylation.

Country
United States
Keywords

Male, Mammals, DNA, Complementary, Models, Genetic, Gene Expression Profiling, Exons, Biological Evolution, Macaca mulatta, Introns, DNA-Binding Proteins, Evolution, Molecular, Alternative Splicing, Mice, Gene Expression Regulation, Animals, Cattle, Phosphorylation, Chickens, Conserved Sequence, Phylogeny

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    841
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
841
Top 0.1%
Top 1%
Top 0.1%
bronze