Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Science Advancesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Science Advances
Article . 2024 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Science Advances
Article . 2024
License: CC BY NC
versions View all 4 versions
addClaim

High-sensitivity luminescent temperature sensors: MFX:1%Sm 2+ (M = Sr, Ba, X = Cl, Br)

MFX:1%Sm2+ (M = Sr, Ba, X = Cl, Br)
Authors: Lizhi Cui; Zhijie Dong; Dechao Yu; Yuhua Wang; Andries Meijerink;

High-sensitivity luminescent temperature sensors: MFX:1%Sm 2+ (M = Sr, Ba, X = Cl, Br)

Abstract

The use of lanthanide luminescence has advanced the field of remote temperature sensing. Luminescence intensity ratio methods relying on emission from two thermally coupled energy levels are popular but suffer from a limited temperature range. Here, we present a versatile luminescent thermometer: Ba(Sr)FBr(Cl):Sm 2+ . The Sm 2+ ion benefits from multiple thermally coupled excited states to extend the temperature range and has strong parity-allowed 4f 6 →4f 5 5d 1 absorption to increase brightness. We conduct a comparative analysis of the temperature sensing performance of Sm 2+ in BaFBr, BaFCl, SrFBr, and SrFCl and address the role of concentration, host, and Boltzmann equilibration. Different thermal coupling schemes, 5 D 1 - 5 D 0 and 4f 5 5d 1 - 5 D 0 , and temperature-dependent lifetimes enable accurate sensing between 350 and 800 kelvin. Differences in 4f 5 5d 1 - 5 D 0 energy gap allows optimization for a temperature range of interest. This type of Sm 2+ -based thermometer holds great potential for temperature monitoring in the wide and relevant range up to 500°C.

Country
Netherlands
Related Organizations
Keywords

Physical and Materials Sciences

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Average
Top 10%
Green
gold