
Marine microplastics are an increasingly big concern. We analyze the occurrence of microplastics in Alaska pollock ( Gadus chalcogrammus ) across 2+ to 12+ ages sampled from the Bering Sea. Results show that 85% of the fish have ingested microplastics and elder fish ingest more with over a third of microplastics in the 100- to 500-micrometer size range, indicating the prevalence of microplastics in Alaska pollock distributed in the Bering Sea. A positive linear relationship is obtained between fish age and microplastic size. Meanwhile, the number of polymer types increases in elder fish. The link between microplastic characteristics in Alaska pollock and the surrounding seawater suggests an extended spatial impact of microplastics. The impact of age-related microplastic ingestion on the population quality of Alaska pollock is still unknown. Therefore, we need to further investigate the potential impact of microplastics on marine organisms and the marine ecosystem, taking age as an important factor.
Gadiformes, Earth, Environmental, Ecological, and Space Sciences, Microplastics, Fishes, Animals, Plastics, Alaska, Ecosystem, Environmental Monitoring
Gadiformes, Earth, Environmental, Ecological, and Space Sciences, Microplastics, Fishes, Animals, Plastics, Alaska, Ecosystem, Environmental Monitoring
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 52 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
