Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

Hearing motion in motion

Authors: Simon Carlile; Johahn Leung; Shannon Locke; Martin Burgess;

Hearing motion in motion

Abstract

The acoustic cues to auditory space are referenced to the head which moves through the world, itself composed of moving sources so that our sensation convolves source with self- motion. With the head still, velocity discrimination, a perceptual process, is related to static acuity via the minimum audible movement angle (MAMA). Yet, while we can accurately localize static sounds, we are much less sensitive to velocity, resorting to distance and time cues where available. Interestingly, when velocity changes as a step function, discrimination thresholds and the amount of post-transition stimulus required for detection is greater than the corresponding MAMA. This suggests that when the head is stationary, the window of temporal integration may vary according to the sound's velocity characteristics. We also have evidence that auditory representational momentum scales with velocity, not duration or distance. Facing and following a moving auditory source is an ecologically important behavior. Tracking exhibits on-line velocity correction for slow to moderate velocities (< 80 °/s) but at higher velocities reflects a more predictive mechanism. Patients with schizophrenia are impaired in their ability to track a moving auditory target, when compared with controls, despite having normal velocity perception when the head is not moving. The presence of other efference copy dysfunctions in schizophrenia suggests a key role for motor efference copy in the disambiguation of self and target motion.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!