<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
doi: 10.1117/12.973705
This paper presents an unsupervised segmentation method dedicated to vegetation scenes with decametric or metric spatial resolutions. The proposed algorithm, named SIEMS, is based on the iterative use of the Expectation–Maximization algorithm and offers a good trade-off between oversegmentation and undersegmentation. Moreover, the choice of its input parameters is not image–dependent on the contrary to existing technics and its performances are not crucially determined by these input parameters. SIEMS consists in creating a coarse segmentation of the image by applying an edge detection method (typically the Canny–Deriche algorithm) and splitting iteratively the undersegmented areas with the Expectation–Maximization algorithm. The method has been applied on two images and shows satisfactory results. It notably allows to distinguish segments with slight radiometric variations without leading to oversegmentation.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |