Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Segmentation of vegetation scenes: the SIEMS method

Authors: Alexandre Alakian;

Segmentation of vegetation scenes: the SIEMS method

Abstract

This paper presents an unsupervised segmentation method dedicated to vegetation scenes with decametric or metric spatial resolutions. The proposed algorithm, named SIEMS, is based on the iterative use of the Expectation–Maximization algorithm and offers a good trade-off between oversegmentation and undersegmentation. Moreover, the choice of its input parameters is not image–dependent on the contrary to existing technics and its performances are not crucially determined by these input parameters. SIEMS consists in creating a coarse segmentation of the image by applying an edge detection method (typically the Canny–Deriche algorithm) and splitting iteratively the undersegmented areas with the Expectation–Maximization algorithm. The method has been applied on two images and shows satisfactory results. It notably allows to distinguish segments with slight radiometric variations without leading to oversegmentation.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?