<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
doi: 10.1117/12.867260
Exploring renewable, sustainable and green energy resources is a critical challenge for scientists and engineers. Large-scale ambient energy, such as the solar energy is available but current technologies are not yet ready to capture it with great efficiency. The sun radiates visible light and also infrared energy, some of which is soaked up by the earth and later released as radiation for hours after sunset. In this study, the use of arrays of carbon nanotubes (CNT) Field Effect Transistors (FET) as photovoltaic (PV) elements is investigated. The interaction between electromagnetic waves and the CNT array is simulated using COMSOL Multiphysics in order to calculate the amount of absorbed power. The effects of the distribution of PV elements on the array performance are studied in order to maximize power absorption for the same number of elements.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |