Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao HAL AMUarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL AMU
Conference object . 2008
Data sources: HAL AMU
https://doi.org/10.1117/12.804...
Article . 2008 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Statistical interpretation of S-on-1 data and the damage initiation mechanism

Authors: Wagner, Frank; Hildenbrand, Anne; Gallais, Laurent; Akhouayri, Hassan; Commandre, Mireille; Natoli, Jean-Yves;

Statistical interpretation of S-on-1 data and the damage initiation mechanism

Abstract

ABSTRACT Multipulse laser induced damage optical materials is an important topic for many applications of nonlinear crystals. We studied multi pulse damage in X-cut KTiOPO 4 . A 6ns Nd:YAG laser has been used with a weakly focused beam. A fatigue phenomenon has been observed and we try to clarif y the question whether or not this phenomenon necessarily implies material modifications. Two possible models have been checked, both of them predicting increasing damage probability with increasing pulse number while all material prop erties are kept constant: (i) Pulse energy fluctuations and depointing increase the probed volume during multiple pulse experiments. The probability to cause damage thus increases with increasing pulse number. Howe ver, this effect turned out to be too small to explain the observed fatigue. (ii) Assuming a constant single shot damage probability p 1 a multipulse experiment can be described by statistically independent resampling of the material. Very good agreement has been found between the 2000-on-1 volume damage data and the statistical multipulse model. Additionaly the spot size dependency of the damage probability is well described by a precursor presence model. Supposing that laser damage precursors are either transient or, if they are permanent, irradiation of the precursor above its threshold only causes damage with a small probability, the presented data can be interpreted without supposing material modifications. Keywords: KTiOPO

Keywords

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics]

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!