Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Adiabatic light processing devices

Authors: John D. Love; Andrew Molloy; Adrian Ankiewicz;

Adiabatic light processing devices

Abstract

The majority of optical processing devices that are employed in optical transmission systems are based on optical fibres or planar optical waveguides that rely on basic physical phenomena such as coupling, interference or Bragg grating reflection for their functionality. These devices include, for example, a wide variety of single- and multi-mode couplers and splitters, Mach-Zehnder interferometers, wavelength filters, dispersion compensators, arrayed waveguide gratings (AWGs), resonators, etc. In addition to these devices, there is a further range of devices that rely solely on their geometrical design for their functionality and involve none of the above physical phenomena. Simple examples of these devices include velocity couplers, null couplers, Y-junctions and tapers. Each of these devices relies on the approximately adiabatic propagation of each of its modes along the length of the device. A key feature of such propagation is that each mode essentially conserves both its power and field symmetry. Recent work has demonstrated that it is possible to switch modes passively with wavelength using the approximately adiabatic transformation of one mode into a mode with dissimilar field symmetry. This transformation is achieved through appropriate geometrical design of the device. For example, it is possible to transform the symmetric fundamental mode into the first odd mode of a planar waveguide by employing a two-mode asymmetric Y-junction. Using this and other mode transformations, it is possible to design compact planar devices that will combine or separate 2 or 3 channels in a coarse wavelength division multiplexing (CWDM) system.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?