Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Polarization separation element (subwavelength structure)

Authors: Makoto Okada; Kazuya Yamamoto; Seiichiro Kitagawa;

Polarization separation element (subwavelength structure)

Abstract

In many applications, where the period of a grating structure is less than the wavelength of the incident light, the grating structure will function more like a medium of uniform index of refraction than as a normal grating. The effective medium index being equivalent to the volume mean index of the grating structure. The equalivent refractive index will depend on its structure or material. When the structure is given orientation, anisotropy called constitutive birefringence will be generated. A refractive index profile can be also be provided on material surface. Making use of these properties of sub-wavelength structure, we have successfully established methods to design, fabricate, prototype, and evaluate elements which perform polarization separation. The polarization separation elements consist of two-layers, plastic material (low refractive-index layer) and vacuum evaporation material (high refractive-index layer). The grating structure has a very small depth. Polarization separation elements both for single wavelength and two wavelengths can be designed. These elements can be designed for any fixed incident angle to the substrate, They can replace glass polarization separation elements and half mirror elements currently used for DVD/CD. It is also one of advantages that they can be mass produced with low cost.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!