Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Leiden University Sc...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1117/12.259...
Article . 2021 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2021
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

Spatial polarization modulators: distinguishing diffraction effects from spatial polarization modulation

distinguishing diffraction effects from spatial polarization modulation
Authors: Mulder, W.; Doelman, D.S.; Keller, C.U.; Patty, C.H.L.; Snik, F.;

Spatial polarization modulators: distinguishing diffraction effects from spatial polarization modulation

Abstract

Are we alone? In our quest to find life beyond Earth, we use our own planet to develop and verify new methods and techniques to remotely detect life. Our Life Signature Detection polarimeter (LSDpol), a snapshot full-Stokes spectropolarimeter to be deployed in the field and in space, looks for signals of life on Earth by sensing the linear and circular polarization states of reflected light. Examples of these biosignatures are linear polarization resulting from O2-A band and vegetation, e.g. the Red edge and the Green bump, as well as circular polarization resulting from the homochirality of biotic molecules. LSDpol is optimized for sensing circular polarization. To this end, LSDpol employs a spatial light modulator in the entrance slit of the spectrograph, a liquid-crystal quarter-wave retarder where the fast axis rotates as a function of slit position. The original design of LSDpol implemented a dual-beam spectropolarimeter by combining a quarter-wave plate with a polarization grating. Unfortunately, this design causes significant linear-to-circular cross-talk. In addition, it revealed spurious polarization modulation effects. Here, we present numerical simulations that illustrate how Fresnel diffraction effects can create these spurious modulations. We verified the simulations with accurate polarization state measurements in the lab using 100% linearly and circularly polarized light.

13 pages, 10 figures, SPIE Proceedings 11833-20

Country
Netherlands
Keywords

Astrophysics - instrumentation and methods for astrophysics, FOS: Physical sciences, Astrophysics - Instrumentation and Methods for Astrophysics, Instrumentation and Methods for Astrophysics (astro-ph.IM)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green