Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

System construction and uncertainty evaluation of absolute measurement of infrared spectral radiance

Authors: Shufang He; Yan-Fei Wang; Caihong Dai; Jinyuan Liu; Guojin Feng;

System construction and uncertainty evaluation of absolute measurement of infrared spectral radiance

Abstract

The absolute measurement of infrared spectral radiance is very important for optical radiometry. In this paper, a system for absolute measurement of infrared spectral radiance is built up. The system consists of fixed-point blackbody sources, a variable temperature blackbody, a radiant source to be measured, Fourier Transform Infrared Radiometer (FTIR), relay optical system, non-contact infrared thermometer and so on. The emissivity of the variable temperature blackbody is 0.999; the temperature range is 50°C ~ 1050°C. The emissivity of the radiant source to be measured is larger than 0.995; the temperature range is 30°C ~ 550°C. The variable temperature blackbody source was calibrated and can be traced to the fixed-point blackbody source. In experiment, it was used as the standard radiant source. The spectral range of this system is 3 μm ~ 14 μm. A serial of experiments have been implemented to analyze the uncertainty of each component, including the repeatability, size-of-source effect, stability, uniformity and so on. To improve the system’s uncertainty, we have suppressed stray radiation and optimized optical system by installing a water-cooled aperture and a field stop at the entrance of the optical system and before the FTIR, respectively; optimizing the system based on optical simulation and replacing the reflective mirrors with one off-axis parabolic mirror. Next step, we will re-evaluate the uncertainty of the improved system.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!