
doi: 10.1117/12.2232071
handle: 1721.1/114884
The Transiting Exoplanet Survey Satellite (TESS) will discover thousands of exoplanets in orbit around the brightest stars in the sky. This first-ever spaceborne all-sky transit survey will identify planets ranging from Earth-sized to gas giants. TESS stars will be far brighter than those surveyed by previous missions; thus, TESS planets will be easier to characterize in follow-up observations. For the first time it will be possible to study the masses, sizes, densities, orbits, and atmospheres of a large cohort of small planets, including a sample of rocky worlds in the habitable zones of their host stars.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 64 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
