
doi: 10.1117/12.2014029
Attribute reduction is an important issue in rough set theory. Many efficient algorithms have been proposed, however, few of them can process huge data sets quickly. In this paper, combining the Trie tree, the algorithms for computing positive region of decision table are proposed. After that, a new algorithm for attribute reduction based on Trie tree is developed, which can be used to process the attribute reduction of large data sets quickly. Experiment results show its high efficiency.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
