Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A multiaxial piezoelectric energy harvester

Authors: B. Remaki; H. D. Mousselmal; H. D. Mousselmal; L. Quiquerez; P. J. Cottinet; L. Petit;

A multiaxial piezoelectric energy harvester

Abstract

An important limitation in the classical energy harvesters based on cantilever beam structure is its monodirectional sensibility. The external excitation must generate an orthogonal acceleration from the beam plane to induced flexural deformation. If the direction of the excitation deviates from this privileged direction, the harvester output power is drastically reduced. This point is obviously very restrictive in the case of an arbitrary excitation direction induced for example by human body movements or vehicles vibrations. In order to overcome this issue of the conventional resonant cantilever configuration with seismic mass, a multidirectional harvester is introduced here by the authors. The multidirectional ability relies on the exploitation of 3 degenerate structural vibration modes where each of them is induced by the corresponding component of the acceleration vector. This specific structure has been already used for 3 axis accelerometers but the approach is here totally revisited because the final functional goal is different. This paper presents the principle and the design considerations of such multidirectional piezoelectric energy harvester. A finite element model has been used for the harvester optimisation. It has been shown that the seismic mass is a relevant parameter for the modes tuning because the resonant frequency of the 1st exploited flexural mode directly depends on the mass whereas the resonance frequency of the 2nd flexural mode depends on its moment of inertia. A simplified centimetric prototype limited to a two orthogonal direction sensibility has permitted to valid the theoretical approach.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!