Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Analysis of the Air-Fuel Mixture Control in Natural Gas Fuelled Turbocharged Engines

Authors: Francisco Payri; Jose Galindo; Jose Manuel Luja´n; He´ctor Climent;

Analysis of the Air-Fuel Mixture Control in Natural Gas Fuelled Turbocharged Engines

Abstract

The use of natural gas in medium and heavy duty engines for public transportation is a promising way for reducing exhaust emissions. Computer simulations, coupled with engine tests, have arisen as a valuable methodology to study the gas exchange processes inside intake and exhaust manifolds. A wave action model is set up in order to simulate a natural gas fuelled turbocharged engine. Once the modeling results show good agreement when comparing with measured data at different running conditions in terms of fluid dynamic properties, the model is used to study the air-fuel mixture process in the intake manifold and optimize the injection system behavior. Comparisons of modeled air-fuel composition in the cylinders are performed with both single and multi-point injection strategies. These cylinder to cylinder air-fuel mixture dispersion problems are analyzed at both steady and transient engine running conditions. Steady operation is performed correctly when using single-point injection since the gas mixer upstream the throttle valve enhances the mixing process. However, significant gas dispersion among cylinders appears during an engine load transient. With multi-point injection the critical parameter is the injection timing, since it is usually larger than the intake stroke period and, if it is not conveniently arranged, significant natural gas dispersion among cylinders may appear at both steady and transient running conditions.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!