Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Engineeri...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Engineering for Gas Turbines and Power
Article . 2008 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Acoustoelastic Interaction in Combustion Chambers: Modeling and Experiments

Modeling and experiments
Authors: Huls, R.A.; van Kampen, J.F.; van der Hoogt, P.J.M.; Kok, J.B.W.; de Boer, A.;

Acoustoelastic Interaction in Combustion Chambers: Modeling and Experiments

Abstract

To decrease NOx emissions from combustion systems, lean premixed combustion is used. A disadvantage is the higher sensitivity to combustion instabilities, leading to increased sound pressure levels in the combustor and resulting in an increased excitation of the surrounding structure: the liner. This causes fatigue, which limits the lifetime of the combustor. This paper presents a joint experimental and numerical investigation of this acoustoelastic interaction problem for frequencies up to 1kHz. To study this problem experimentally, a test setup has been built consisting of a single burner, 500kW, 5bar combustion system. The thin structure (liner) is contained in a thick pressure vessel with optical access for a traversing laser vibrometer system to measure the vibration levels of the liner. The acoustic excitation of the liner is measured using pressure sensors measuring the acoustic pressures inside the combustion chamber. For the numerical model, the finite element method with full coupling between structural vibration and acoustics is used. The flame is modeled as an acoustic volume source corresponding to a heat release rate that is frequency independent. The temperature distribution is taken from a Reynolds averaged Navier Stokes (RaNS) computational fluid dynamics (CFD) simulation. Results show very good agreement between predicted and measured acoustic pressure levels. The predicted and measured vibration levels also match fairly well.

Country
Netherlands
Related Organizations
Keywords

2023 OA procedure

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
hybrid