Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of the Londo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of the London Mathematical Society
Article . 2000 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On the Centred Hausdorff Measure

On the centred Hausdorff measure
Authors: Alexander Schechter;

On the Centred Hausdorff Measure

Abstract

Summary: Let \(\nu\) be a measure on a separable metric space. For \(t,q\in\mathbb{R}\), the centred Hausdorff measure \(\mu^h\) with the gauge function \(h(x,r)= r^t(\nu B(x,r))^q\) is studied. The dimension defined by these measures plays an important role in the study of multifractals. It is shown that if \(\nu\) is a doubling measure, then \(\mu^h\) is equivalent to the usual spherical measure, and thus they define the same dimension. Moreover, it is shown that this is true even without the doubling condition, if \(q\geq 1\) and \(t\geq 0\) or if \(q\leq 0\). An example in \(\mathbb{R}^2\) is also given to show the surprising fact that the above assertion is not necessarily true if \(0< q< 1\). Another interesting question, which has been asked several times about the centred Hausdorff measure, is wether it is Borel regular. A positive answer is given, using the above equivalence for all gauge functions mentioned above.

Related Organizations
Keywords

Length, area, volume, other geometric measure theory, Fractals, Hausdorff and packing measures, doubling measure, multifractals, centred Hausdorff measure, spherical measure, gauge functions

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!