
For polynomials, local connectivity of Julia sets is a much-studied and important property. Indeed, when the Julia set of a polynomial of degree $d\geq 2$ is locally connected, the topological dynamics can be completely described as a quotient of a much simpler system: angle $d$-tupling on the circle. For a transcendental entire function, local connectivity is less significant, but we may still ask for a description of the topological dynamics as the quotient of a simpler system. To this end, we introduce the notion of "docile" functions: a transcendental entire function with bounded postsingular set is docile if it is the quotient of a suitable disjoint-type function. Moreover, we prove docility for the large class of geometrically finite transcendental entire functions with bounded criticality on the Julia set. This can be seen as an analogue of the local connectivity of Julia sets for geometrically finite polynomials, first proved by Douady and Hubbard, and extends previous work of the second author and of Mihaljević for more restrictive classes of entire functions.
41 pages, 3 figures. V3: Some expositional changes and clarifications in the proof of Proposition 7.1
Mathematics - Complex Variables, FOS: Mathematics, Dynamical Systems (math.DS), Primary 37F10, Secondary 30D05, 30F45, 37F20, Mathematics - Dynamical Systems, Complex Variables (math.CV)
Mathematics - Complex Variables, FOS: Mathematics, Dynamical Systems (math.DS), Primary 37F10, Secondary 30D05, 30F45, 37F20, Mathematics - Dynamical Systems, Complex Variables (math.CV)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
