Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of the Londo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of the London Mathematical Society
Article . 1991 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Arithmetic Permutations

Arithmetic permutations
Authors: Adeleke, S. A.; Glass, A. M. W.; Morley, L.;

Arithmetic Permutations

Abstract

The group \(\hbox{Sym }\mathbb{R}\) of permutations of the set \(\mathbb{R}\) of real numbers is considered in the paper. Let \(P_ 0\) be its subgroup of power functions \(x\mapsto x^{m/n}\) where \(m\), \(n\) are positive odd integers, \(T\) be the subgroup of translations \(x\mapsto x+a\) where \(a\) is a real algebraic number, and \(M\) be the subgroup of multiplications \(x\mapsto bx\) where \(b\) is a positive algebraic number. It is proved that \(gp(P_ 0,T)=P_ 0*T\) and \(gp(P_ 0,M,T)=P_ 0M*_ M MT\) (Theorems \(B\) and \(C\)). In particular, Theorem B implies immediately that the translation \(x\mapsto x+1\) and the power function \(x\mapsto x^ n\) are generators of a free group of degree 2 whenever \(n\geq 3\) is a fixed odd integer (Theorem A); this was known earlier only for prime \(n\) [\textit{S. White}, J. Algebra 118, 408-422 (1988; Zbl 0662.20024)].

Related Organizations
Keywords

Generators, relations, and presentations of groups, Free products of groups, free products with amalgamation, Higman-Neumann-Neumann extensions, and generalizations, permutations, Free nonabelian groups, General theory for infinite permutation groups, power functions, translations, multiplications, real numbers, free group, Infinite automorphism groups, generators

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!