
doi: 10.1111/sapm.12037
For the classical Stirling numbers of the second kind, asymptotic formulae are derived in terms of a local central limit theorem. The underlying probabilistic approach also applies to the Chebyshev–Stirling numbers, a special case of the Jacobi–Stirling numbers. Essential features are uniformity properties and the fact that the leading terms of the asymptotics are given explicitly and they contain elementary expressions only. Thereby supplements of the asymptotic analysis of these numbers are established.
Bell and Stirling numbers, Mathematical analysis, Mathematics
Bell and Stirling numbers, Mathematical analysis, Mathematics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 11 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
