
SummaryFunctional additive models provide a flexible yet simple framework for regressions involving functional predictors. The utilization of a data-driven basis in an additive rather than linear structure naturally extends the classical functional linear model. However, the critical issue of selecting non-linear additive components has been less studied. In this work, we propose a new regularization framework for structure estimation in the context of reproducing kernel Hilbert spaces. The approach proposed takes advantage of functional principal components which greatly facilitates implementation and theoretical analysis. The selection and estimation are achieved by penalized least squares using a penalty which encourages the sparse structure of the additive components. Theoretical properties such as the rate of convergence are investigated. The empirical performance is demonstrated through simulation studies and a real data application.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 48 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
