Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Physiologia Plantaru...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Physiologia Plantarum
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

Fallopia japonica and Fallopia × bohemica extracts cause ultrastructural and biochemical changes in root tips of radish seedlings

Authors: Katarina Šoln; Nada Žnidaršič; Marina Klemenčič; Jasna Dolenc Koce;

Fallopia japonica and Fallopia × bohemica extracts cause ultrastructural and biochemical changes in root tips of radish seedlings

Abstract

AbstractJapanese knotweed (Fallopia japonica) and Bohemian knotweed (Fallopia × bohemica) are invasive plants that use allelopathy as an additional mechanism for colonization of the new habitat. Allelochemicals affect the growth of roots of neighboring plants. In the present study, we analyze the early changes associated with the inhibited root growth of radish seedlings exposed to aqueous extracts of knotweed rhizomes for 3 days. Here, we show that cells in the root cap treated with the knotweed extracts exhibited reduced cell length and displayed several ultrastructural changes, including the increased abundance of dilated ER cisternae filled with electron‐dense material (ER bodies) and the accumulation of dense inclusions. Moreover, mitochondrial damage was exhibited in the root cap and the meristem zone compared to the non‐treated radish seedlings. Furthermore, malfunction of the intracellular redox balance system was detected as the increased total antioxidative capacity. We also detected increased metacaspase‐like proteolytic activities and, in the case of 10% extract of F. japonica, increased caspase‐like proteolytic activities. These ultrastructural and biochemical effects could be the reason for the more than 60% shorter root length of treated radish seedlings compared to controls.

Country
Slovenia
Keywords

allelochemicals, proteaze, Reynoutria, Meristem, alelokemikalije, Fallopia, Raphanus, Seedlings, Fallopia japonica, info:eu-repo/classification/udc/581.1:577.15, proteases, Polygonum, programmed cell death, programirana celična smrt

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
Green
hybrid