
SummaryThe elemental composition of plants (the elementome) is a reliable indicator of their functional traits and the ecological strategies that they follow, and thus represents a good predictor of how ecosystems work. Biodiversity and, especially, functional diversity are also widely recognized as important drivers of ecosystem functioning, mainly because of niche partitioning amongst different species. Here, I review evidence indicating that plant elementomes relate to their ecological niches and how plant elemental concentrations may shift in response to abiotic and biotic drivers. I propose the use of ecosystem elementome diversity as a universal metric to compare ecosystems and investigate diversity–ecosystem functioning relationships. Future research using this promising novel approach will bring together elementomes, diversity, and ecosystem functioning.
Competition, Ecological niche, Nutrients, Biodiversity, Biogeochemistry, Plants, Stoichiometry, Biology, Functional traits, Ecosystem
Competition, Ecological niche, Nutrients, Biodiversity, Biogeochemistry, Plants, Stoichiometry, Biology, Functional traits, Ecosystem
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 50 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
