Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ New Phytologistarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
New Phytologist
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
New Phytologist
Article . 2021 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
New Phytologist
Article . 2022
versions View all 2 versions
addClaim

ATP‐binding cassette transporters in nonmodel plants

Authors: Joanna Banasiak; Michał Jasiński;

ATP‐binding cassette transporters in nonmodel plants

Abstract

SummaryKnowledge about plant ATP‐binding cassette (ABC) proteins is of great value for sustainable agriculture, economic yield, and the generation of high‐quality products, especially under unfavorable growth conditions. We have learned much about ABC proteins in model organisms, notably Arabidopsis thaliana; however, the importance of research dedicated to these transporters extends far beyond Arabidopsis biology. Recent progress in genomic and transcriptomic approaches for nonmodel and noncanonical model plants allows us to look at ABC transporters from a wider perspective and consider chemodiversity and functionally driven adaptation as distinctive mechanisms during their evolution. Here, by considering several representatives from agriculturally important families and recent progress in functional characterization of nonArabidopsis ABC proteins, we aim to bring attention to understanding the evolutionary background, distribution among lineages and possible mechanisms underlying the adaptation of this versatile transport system for plant needs. Increasing the knowledge of ABC proteins in nonmodel plants will facilitate breeding and development of new varieties based on, for example, genetic variations of endogenous genes and/or genome editing, representing an alternative to transgenic approaches.

Keywords

Plant Breeding, Arabidopsis, ATP-Binding Cassette Transporters, Plants, Adaptation, Physiological

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    50
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
50
Top 1%
Top 10%
Top 10%
bronze