Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Mathematical Financearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Mathematical Finance
Article . 2023 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2023
Data sources: zbMATH Open
versions View all 2 versions
addClaim

Asymptotic subadditivity/superadditivity of Value‐at‐Risk under tail dependence

Asymptotic subadditivity/superadditivity of value-at-risk under tail dependence
Authors: Wenhao Zhu; Lujun Li; Jingping Yang; Jiehua Xie; Liulei Sun;

Asymptotic subadditivity/superadditivity of Value‐at‐Risk under tail dependence

Abstract

AbstractThis paper presents a new method for discussing the asymptotic subadditivity/superadditivity of Value‐at‐Risk (VaR) for multiple risks. We consider the asymptotic subadditivity and superadditivity properties of VaR for multiple risks whose copula admits a stable tail dependence function (STDF). For the purpose, a marginal region is defined by the marginal distributions of the multiple risks, and a stochastic order named tail concave order is presented for comparing individual tail risks. We prove that asymptotic subadditivity of VaR holds when individual risks are smaller than regularly varying (RV) random variables with index −1 under the tail concave order. We also provide sufficient conditions for VaR being asymptotically superadditive. For two multiple risks sharing the same copula function and satisfying the tail concave order, a comparison result on the asymptotic subadditivity/superadditivity of VaR is given. Asymptotic diversification ratios for RV and log regularly varying (LRV) margins with specific copula structures are obtained. Empirical analysis on financial data is provided for highlighting our results.

Related Organizations
Keywords

marginal region, asymptotic subadditivity/superadditivity, value-at-risk, copula, tail dependence function, asymptotic diversification ratio, Characterization and structure theory for multivariate probability distributions; copulas, tail concave order, Statistical methods; risk measures

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!