
doi: 10.1111/mafi.12393
AbstractThis paper presents a new method for discussing the asymptotic subadditivity/superadditivity of Value‐at‐Risk (VaR) for multiple risks. We consider the asymptotic subadditivity and superadditivity properties of VaR for multiple risks whose copula admits a stable tail dependence function (STDF). For the purpose, a marginal region is defined by the marginal distributions of the multiple risks, and a stochastic order named tail concave order is presented for comparing individual tail risks. We prove that asymptotic subadditivity of VaR holds when individual risks are smaller than regularly varying (RV) random variables with index −1 under the tail concave order. We also provide sufficient conditions for VaR being asymptotically superadditive. For two multiple risks sharing the same copula function and satisfying the tail concave order, a comparison result on the asymptotic subadditivity/superadditivity of VaR is given. Asymptotic diversification ratios for RV and log regularly varying (LRV) margins with specific copula structures are obtained. Empirical analysis on financial data is provided for highlighting our results.
marginal region, asymptotic subadditivity/superadditivity, value-at-risk, copula, tail dependence function, asymptotic diversification ratio, Characterization and structure theory for multivariate probability distributions; copulas, tail concave order, Statistical methods; risk measures
marginal region, asymptotic subadditivity/superadditivity, value-at-risk, copula, tail dependence function, asymptotic diversification ratio, Characterization and structure theory for multivariate probability distributions; copulas, tail concave order, Statistical methods; risk measures
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
