
AbstractIn this paper, we consider factor models of the term structure based on a Brownian filtration. We show that the existence of a nondeterministic long rate in a factor model of the term structure implies, as a consequence of the Dybvig–Ingersoll–Ross theorem, that the model has an equivalent representation in which one of the state variables is nondecreasing. For two‐dimensional factor models, we prove moreover that if the long rate is nondeterministic, the yield curve flattens out, and the factor process is asymptotically nondeterministic, then the term structure is unbounded. Finally, we provide an explicit example of a three‐dimensional affine factor model with a nondeterministic yet finite long rate in which the volatility of the factor process does not vanish over time.
Dybvig–Ingersoll–Ross theorem, factor model, term structure, long rate, Applications of stochastic analysis (to PDEs, etc.), Interest rates, asset pricing, etc. (stochastic models), Dybvig-Ingersoll-Ross theorem
Dybvig–Ingersoll–Ross theorem, factor model, term structure, long rate, Applications of stochastic analysis (to PDEs, etc.), Interest rates, asset pricing, etc. (stochastic models), Dybvig-Ingersoll-Ross theorem
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
