Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Animal Br...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Animal Breeding and Genetics
Article . 2014 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Research.fi
Article . 2020 . Peer-reviewed
Data sources: Research.fi
versions View all 3 versions
addClaim

Comparison of multiplicative heterogeneous variance adjustment models for genetic evaluations

Authors: Márkus, Sz.; Mäntysaari, E.A.; Strandén, I.; Eriksson, J-Å.; Lidauer, M.H.;

Comparison of multiplicative heterogeneous variance adjustment models for genetic evaluations

Abstract

SummaryTwo heterogeneous variance adjustment methods and two variance models were compared in a simulation study. The method used for heterogeneous variance adjustment in the Nordic test‐day model, which is a multiplicative method based on Meuwissen (J. Dairy Sci., 79, 1996, 310), was compared with a restricted multiplicative method where the fixed effects were not scaled. Both methods were tested with two different variance models, one with a herd‐year and the other with a herd‐year‐month random effect. The simulation study was built on two field data sets from Swedish Red dairy cattle herds. For both data sets, 200 herds with test‐day observations over a 12‐year period were sampled. For one data set, herds were sampled randomly, while for the other, each herd was required to have at least 10 first‐calving cows per year. The simulations supported the applicability of both methods and models, but the multiplicative mixed model was more sensitive in the case of small strata sizes. Estimation of variance components for the variance models resulted in different parameter estimates, depending on the applied heterogeneous variance adjustment method and variance model combination. Our analyses showed that the assumption of a first‐order autoregressive correlation structure between random‐effect levels is reasonable when within‐herd heterogeneity is modelled by year classes, but less appropriate for within‐herd heterogeneity by month classes. Of the studied alternatives, the multiplicative method and a variance model with a random herd‐year effect were found most suitable for the Nordic test‐day model for dairy cattle evaluation.

Country
Finland
Keywords

Analysis of Variance, Models, Statistical, Time Factors, Kotieläintuotanto, riistanhoito, dairy cattle, simulation, mehiläistalous, kalatalous, Dairying, Milk, multiplicative mixed model, variance components, Animals, Regression Analysis, Cattle, Female, heterogeneous variance adjustment

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!