Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ HELIOS Repositoryarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HELIOS Repository
Part of book or chapter of book . 2008
Data sources: HELIOS Repository
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Annals of the New York Academy of Sciences
Article . 1997 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Estrogen and Progesterone Receptors in the Endometrium

Authors: Moutsatsou, P.; Sekeris, Constantine E.;

Estrogen and Progesterone Receptors in the Endometrium

Abstract

The endometrium, as a target of estrogens and progestins, possesses the respective receptor proteins. These receptors belong to the superfamily of nuclear receptors, having important functional domains required for steroid ligand binding, for dimer formation, for interaction with HREs of DNA, for transcription modulation, for association with other proteins, for intracellular trafficking, and other activities. The mechanism of action of the steroid hormones involves modulation of gene activity through interaction of the hormone-receptor complex with HREs and with other nuclear proteins, but also encompasses nongenomic effects, which accounts for the rapid effects of the steroids on cellular functions. Antihormones-antiestrogen and antiprogestins-compete with their respective hormones for binding sites on the receptor molecules. Some antihormones are partial agonists. The molecular mechanisms underlying the dual behavior of antihormones is under consideration. The concentration of ER and PR in different physiological and pathophysiological states, such as the menstrual cycle, pregnancy, and endometrial cancer, has been determined by biochemical and immuno(cyto)chemical methods. The levels of estrogens and progestins are important regulators of ER and PR gene expression. Estradiol acts as a cell mitogen, inducing key genes involved in replication, and its tumor promoter effect is discussed in this sense, whereas progesterone has reverse effects when compared to estradiol and acts as a differentiation factor. The cross-talk between the endocrine system, growth factors, and neurotransmitters can take place both at the receptor level, involving mainly phosphorylation reactions, and at the gene level, mainly through protein-protein interactions.

Country
Greece
Keywords

Endometrium, Receptors, Estrogen, Pregnancy, Humans, Female, Receptors, Progesterone, Menstrual Cycle

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    47
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
47
Top 10%
Top 10%
Top 10%
Green