Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ FEMS Microbiology Re...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
FEMS Microbiology Reviews
Article . 1994 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Microbes in food processing technology

Authors: Hofstra, H.; Vossen, J.M.B.M. van der; Plas, J. van der;

Microbes in food processing technology

Abstract

There is an increasing understanding that the microbial quality of a certain food is the result of a chain of events. It is clear that the microbial safety of food can only be guaranteed when the overall processing, including the production of raw materials, distribution and handling by the consumer are taken into consideration. Therefore, the microbiological quality assurance of foods is not only a matter of control, but also of a careful design of the total process chain. Food industry has now generally adapted quality assurance systems and is implementing the Hazard Analysis Critical Control Point (HACCP) concept. Rapid microbiological monitoring systems should be used in these cases. There is a need for rapid and simple microbiological tests which can be adapted to the technology and logistics of specific production processes. Traditional microbiological methods generally do not meet these high requirements. This paper discusses the tests, based on molecular biological principles, to detect and identify microbes in food-processing chains. Tests based on DNA technology are discussed, including in vitro DNA amplification like the polymerase chain reaction (PCR) method and identifications based on RFLP, RAPD and DNA fingerprinting analysis. PCR-based methodology can be used for the rapid detection of microbes in food manufacturing environments. In addition, DNA fingerprinting methods are suitable for investigating sources and routes of microbial contamination in the food cycle.

Country
Netherlands
Related Organizations
Keywords

Food processing, Food Handling, HACCP, Bacterial Typing Techniques, Detection, DNA amplification, Strain typing, Food Microbiology, Bacteria (microorganisms)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    34
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
34
Top 10%
Top 10%
Top 10%
bronze