
pmid: 16866935
SummaryNatural systems are being subjected to unprecedented rates of change and unique pressures from a combination of anthropogenic environmental change drivers. Plant–plant interactions are an important part of the mechanisms governing the response of plant species and communities to these drivers. For example, competition plays a central role in mediating the impacts of atmospheric nitrogen deposition, increased atmospheric carbon dioxide concentrations, climate change and invasive nonnative species. Other plant–plant interaction processes are also being recognized as important factors in determining the impacts of environmental change, including facilitation and evolutionary processes associated with plant–plant interactions. However, plant–plant interactions are not the only factors determining the response of species and communities to environmental change drivers – their activity must be placed within the context of the wide range of factors that regulate species, communities and ecosystems. A major research challenge is to understand when plant–plant interactions play a key role in regulating the impact of environmental change drivers, and the type of role that plant–plant interactions play. Although this is a considerable challenge, some areas of current research may provide the starting point to achieving these goals, and should be pursued through large‐scale, integrated, multisite experiments. Contents Summary 271 I. Introduction 272 II. Plant–plant interactions mediate the impacts of environmental change 273 III. Plant–plant interactions in context 276 IV. Understanding variation in the role of plant–plant interactions 278 V. Concluding remarks 281 Acknowledgements 281 References 281
Climate, severity gradients, Environment, Biological Evolution, facilitation, climate change, ranges, evolution, Symbiosis, competition, Ecosystem, Plant Physiological Phenomena
Climate, severity gradients, Environment, Biological Evolution, facilitation, climate change, ranges, evolution, Symbiosis, competition, Ecosystem, Plant Physiological Phenomena
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 444 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
